Nuprl Lemma : cat-arrow_wf

[C:SmallCategory]. (cat-arrow(C) ∈ x:cat-ob(C) ⟶ y:cat-ob(C) ⟶ Type)


Proof




Definitions occuring in Statement :  cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  pi1: fst(t) pi2: snd(t) top: Top all: x:A. B[x] cat-arrow: cat-arrow(C) and: P ∧ Q spreadn: spread4 small-category: SmallCategory member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat_ob_pair_lemma
Rules used in proof :  hypothesisEquality hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid introduction sqequalRule productElimination rename thin setElimination sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  (cat-arrow(C)  \mmember{}  x:cat-ob(C)  {}\mrightarrow{}  y:cat-ob(C)  {}\mrightarrow{}  Type)



Date html generated: 2017_01_11-AM-09_17_39
Last ObjectModification: 2017_01_10-PM-06_15_36

Theory : small!categories


Home Index