Nuprl Lemma : cat-arrow_wf
∀[C:SmallCategory]. (cat-arrow(C) ∈ x:cat-ob(C) ⟶ y:cat-ob(C) ⟶ Type)
Proof
Definitions occuring in Statement : 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
pi1: fst(t)
, 
pi2: snd(t)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
cat-arrow: cat-arrow(C)
, 
and: P ∧ Q
, 
spreadn: spread4, 
small-category: SmallCategory
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat_ob_pair_lemma
Rules used in proof : 
hypothesisEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
sqequalRule, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  (cat-arrow(C)  \mmember{}  x:cat-ob(C)  {}\mrightarrow{}  y:cat-ob(C)  {}\mrightarrow{}  Type)
Date html generated:
2017_01_11-AM-09_17_39
Last ObjectModification:
2017_01_10-PM-06_15_36
Theory : small!categories
Home
Index