Nuprl Lemma : same-face-edge-arrows-commute0

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(C);I;J;x;i)].
  ∀f:name-morph(I;[]). ∀a,b:nameset(I).
    ∀[v:I-face(cubical-nerve(C);I)]
      ((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b)) 
        nerve_box_edge(box;f;a) 
        nerve_box_edge(box;flip(f;a);b))
         (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a)) 
            nerve_box_edge(box;f;b) 
            nerve_box_edge(box;flip(f;b);a))
         ∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing 
         ((v ∈ box) and 
         (dimension(v) b ∈ Cname)) and 
         (dimension(v) a ∈ Cname)) and 
         (a b ∈ nameset(I))) and 
         ((f b) 0 ∈ ℕ2) and 
         (((f a) 0 ∈ ℕ2) ∧ (direction(v) (f dimension(v)) ∈ ℕ2))) 
    supposing ((∃j1∈J. ¬(j1 a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 b ∈ Cname)))
    ∨ ((¬↑null(J)) ∧ ((f x) i ∈ ℤ) ∧ ((flip(f;a) x) i ∈ ℤ) ∧ ((flip(f;b) x) i ∈ ℕ2))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) small-category: SmallCategory l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) null: null(as) nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a and: P ∧ Q or: P ∨ Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] assert: b ifthenelse: if then else fi  btrue: tt guard: {T} int_seg: {i..j-} lelt: i ≤ j < k nameset: nameset(L) false: False coordinate_name: Cname int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A prop: cons: [a b] bfalse: ff subtype_rel: A ⊆B decidable: Dec(P) name-morph: name-morph(I;J) name-morph-flip: flip(f;y) bool: 𝔹 unit: Unit uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb open_box: open_box(X;I;J;x;i) so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B sq_stable: SqStable(P) label: ...$L... t
Lemmas referenced :  nameset_wf list-cases stuck-spread base_wf length_of_nil_lemma null_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf product_subtype_list null_cons_lemma false_wf nerve_box_label_same name-morph-flip_wf decidable__assert null_wf3 subtype_rel_list top_wf equal_wf int_seg_wf eq-cname_wf face-dimension_wf cubical-nerve_wf bool_wf eqtt_to_assert assert-eq-cname eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot coordinate_name_wf l_member_wf I-face_wf not_wf equal-wf-T-base extd-nameset-nil face-direction_wf or_wf l_exists_wf assert_wf extd-nameset_subtype_int nil_wf name-morph_wf open_box_wf list_wf small-category_wf same-face-edge-arrows-commute squash_wf true_wf cat-ob_wf small-category-subtype cat-arrow_wf iff_weakening_equal cat-comp_wf nerve_box_edge_same1 subtype_rel-equal decidable__equal_int intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le decidable__lt lelt_wf iff_transitivity bnot_wf iff_weakening_uiff assert_of_bnot set_subtype_base le_wf int_subtype_base nerve_box_label_wf name-morph-flips-commute
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin unionElimination extract_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination sqequalRule baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality natural_numberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll promote_hyp hypothesis_subsumption independent_functionElimination because_Cache applyEquality inlFormation inrFormation equalityElimination instantiate cumulativity axiomEquality productEquality setEquality hyp_replacement imageElimination universeEquality imageMemberEquality functionEquality dependent_set_memberEquality impliesFunctionality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].
    \mforall{}f:name-morph(I;[]).  \mforall{}a,b:nameset(I).
        \mforall{}[v:I-face(cubical-nerve(C);I)]
            ((cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;a)) 
                nerve\_box\_label(box;flip(flip(f;a);b)) 
                nerve\_box\_edge(box;f;a) 
                nerve\_box\_edge(box;flip(f;a);b))
                  =  (cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;b)) 
                        nerve\_box\_label(box;flip(flip(f;b);a)) 
                        nerve\_box\_edge(box;f;b) 
                        nerve\_box\_edge(box;flip(f;b);a)))  supposing 
                  ((v  \mmember{}  box)  and 
                  (\mneg{}(dimension(v)  =  b))  and 
                  (\mneg{}(dimension(v)  =  a))  and 
                  (\mneg{}(a  =  b))  and 
                  ((f  b)  =  0)  and 
                  (((f  a)  =  0)  \mwedge{}  (direction(v)  =  (f  dimension(v))))) 
        supposing  ((\mexists{}j1\mmember{}J.  \mneg{}(j1  =  a))  \mwedge{}  (\mexists{}j2\mmember{}J.  \mneg{}(j2  =  b)))
        \mvee{}  ((\mneg{}\muparrow{}null(J))  \mwedge{}  ((f  x)  =  i)  \mwedge{}  ((flip(f;a)  x)  =  i)  \mwedge{}  ((flip(f;b)  x)  =  i))



Date html generated: 2017_10_05-PM-03_38_41
Last ObjectModification: 2017_07_28-AM-11_25_57

Theory : cubical!sets


Home Index