Nuprl Lemma : same-face-edge-arrows-commute0
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(C);I;J;x;i)].
  ∀f:name-morph(I;[]). ∀a,b:nameset(I).
    ∀[v:I-face(cubical-nerve(C);I)]
      ((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b)) 
        nerve_box_edge(box;f;a) 
        nerve_box_edge(box;flip(f;a);b))
         = (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a)) 
            nerve_box_edge(box;f;b) 
            nerve_box_edge(box;flip(f;b);a))
         ∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing 
         ((v ∈ box) and 
         (¬(dimension(v) = b ∈ Cname)) and 
         (¬(dimension(v) = a ∈ Cname)) and 
         (¬(a = b ∈ nameset(I))) and 
         ((f b) = 0 ∈ ℕ2) and 
         (((f a) = 0 ∈ ℕ2) ∧ (direction(v) = (f dimension(v)) ∈ ℕ2))) 
    supposing ((∃j1∈J. ¬(j1 = a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 = b ∈ Cname)))
    ∨ ((¬↑null(J)) ∧ ((f x) = i ∈ ℤ) ∧ ((flip(f;a) x) = i ∈ ℤ) ∧ ((flip(f;b) x) = i ∈ ℕ2))
Proof
Definitions occuring in Statement : 
nerve_box_edge: nerve_box_edge(box;c;y)
, 
nerve_box_label: nerve_box_label(box;L)
, 
cubical-nerve: cubical-nerve(X)
, 
open_box: open_box(X;I;J;x;i)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
name-morph-flip: flip(f;y)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
small-category: SmallCategory
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nameset: nameset(L)
, 
false: False
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
cons: [a / b]
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
name-morph: name-morph(I;J)
, 
name-morph-flip: flip(f;y)
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
open_box: open_box(X;I;J;x;i)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
label: ...$L... t
Lemmas referenced : 
nameset_wf, 
list-cases, 
stuck-spread, 
base_wf, 
length_of_nil_lemma, 
null_nil_lemma, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
product_subtype_list, 
null_cons_lemma, 
false_wf, 
nerve_box_label_same, 
name-morph-flip_wf, 
decidable__assert, 
null_wf3, 
subtype_rel_list, 
top_wf, 
equal_wf, 
int_seg_wf, 
eq-cname_wf, 
face-dimension_wf, 
cubical-nerve_wf, 
bool_wf, 
eqtt_to_assert, 
assert-eq-cname, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
coordinate_name_wf, 
l_member_wf, 
I-face_wf, 
not_wf, 
equal-wf-T-base, 
extd-nameset-nil, 
face-direction_wf, 
or_wf, 
l_exists_wf, 
assert_wf, 
extd-nameset_subtype_int, 
nil_wf, 
name-morph_wf, 
open_box_wf, 
list_wf, 
small-category_wf, 
same-face-edge-arrows-commute, 
squash_wf, 
true_wf, 
cat-ob_wf, 
small-category-subtype, 
cat-arrow_wf, 
iff_weakening_equal, 
cat-comp_wf, 
nerve_box_edge_same1, 
subtype_rel-equal, 
decidable__equal_int, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
decidable__lt, 
lelt_wf, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
nerve_box_label_wf, 
name-morph-flips-commute
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
independent_functionElimination, 
because_Cache, 
applyEquality, 
inlFormation, 
inrFormation, 
equalityElimination, 
instantiate, 
cumulativity, 
axiomEquality, 
productEquality, 
setEquality, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
functionEquality, 
dependent_set_memberEquality, 
impliesFunctionality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].
    \mforall{}f:name-morph(I;[]).  \mforall{}a,b:nameset(I).
        \mforall{}[v:I-face(cubical-nerve(C);I)]
            ((cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;a)) 
                nerve\_box\_label(box;flip(flip(f;a);b)) 
                nerve\_box\_edge(box;f;a) 
                nerve\_box\_edge(box;flip(f;a);b))
                  =  (cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;b)) 
                        nerve\_box\_label(box;flip(flip(f;b);a)) 
                        nerve\_box\_edge(box;f;b) 
                        nerve\_box\_edge(box;flip(f;b);a)))  supposing 
                  ((v  \mmember{}  box)  and 
                  (\mneg{}(dimension(v)  =  b))  and 
                  (\mneg{}(dimension(v)  =  a))  and 
                  (\mneg{}(a  =  b))  and 
                  ((f  b)  =  0)  and 
                  (((f  a)  =  0)  \mwedge{}  (direction(v)  =  (f  dimension(v))))) 
        supposing  ((\mexists{}j1\mmember{}J.  \mneg{}(j1  =  a))  \mwedge{}  (\mexists{}j2\mmember{}J.  \mneg{}(j2  =  b)))
        \mvee{}  ((\mneg{}\muparrow{}null(J))  \mwedge{}  ((f  x)  =  i)  \mwedge{}  ((flip(f;a)  x)  =  i)  \mwedge{}  ((flip(f;b)  x)  =  i))
Date html generated:
2017_10_05-PM-03_38_41
Last ObjectModification:
2017_07_28-AM-11_25_57
Theory : cubical!sets
Home
Index