Nuprl Lemma : nerve_box_edge_same1

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[y:nameset(I)]. ∀[c:{c:name-morph(I;[])| (c y) 0 ∈ ℕ2} ].
  ∀f:I-face(cubical-nerve(C);I)
    (cube(f) flip(c;y) x.Ax))
    nerve_box_edge(box;c;y)
    ∈ (cat-arrow(C) nerve_box_label(box;c) nerve_box_label(box;flip(c;y))) 
    supposing (f ∈ box) ∧ (direction(f) (c dimension(f)) ∈ ℕ2) ∧ (direction(f) (flip(c;y) dimension(f)) ∈ ℕ2) 
  supposing (∃j∈J. ¬(j y ∈ Cname)) ∨ (((c x) i ∈ ℕ2) ∧ (¬↑null(J)))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) null: null(as) nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n equal: t ∈ T axiom: Ax functor-arrow: arrow(F) cat-arrow: cat-arrow(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q nerve_box_edge: nerve_box_edge(box;c;y) subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T name-morph: name-morph(I;J) so_apply: x[s] cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) implies:  Q or: P ∨ Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] assert: b ifthenelse: if then else fi  btrue: tt guard: {T} nameset: nameset(L) false: False coordinate_name: Cname int_upper: {i...} not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) prop: cons: [a b] bfalse: ff open_box: open_box(X;I;J;x;i) respects-equality: respects-equality(S;T) decidable: Dec(P) sq_type: SQType(T) face-name: face-name(f) pi2: snd(t) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) true: True uiff: uiff(P;Q) istype: istype(T) sq_stable: SqStable(P) iff: ⇐⇒ Q rev_implies:  Q bnot: ¬bb subtract: m less_than': less_than'(a;b) unit: Unit bool: 𝔹 name-morph-flip: flip(f;y) cand: c∧ B adjacent-compatible: adjacent-compatible(X;I;L) face-compatible: face-compatible(X;I;f1;f2) spreadn: spread3 face-cube: cube(f) cubical-nerve: cubical-nerve(X) cube-set-restriction: f(s) I-cube: X(I) so_apply: x[s1;s2;s3] so_lambda: so_lambda3 functor-comp: functor-comp(F;G) poset-functor: poset-functor(J;K;f) lt_int: i <j le_int: i ≤j isname: isname(z) functor-ob: ob(F) cat-functor: Functor(C1;C2)
Lemmas referenced :  nerve_box_label_same nerve-box-common-face_wf2 subtype_rel_set name-morph_wf nil_wf coordinate_name_wf cat-ob_wf poset-cat_wf equal-wf-T-base int_seg_wf subtype_rel_self nameset_wf list-cases stuck-spread istype-base istype-void length_of_nil_lemma null_nil_lemma int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf product_subtype_list null_cons_lemma name-morph-flip_wf subtype_rel-equal cat-arrow_wf l_member_wf I-face_wf cubical-nerve_wf face-direction_wf face-dimension_wf extd-nameset-nil l_exists_wf not_wf equal_wf istype-assert null_wf3 subtype_rel_list top_wf extd-nameset-respects-equality open_box_wf list_wf small-category_wf decidable__equal-coordinate_name lelt_wf int_subtype_base le_wf set_subtype_base subtype_base_sq face-name_wf pairwise-implies cubical-nerve-I-cube cubical-set_wf true_wf squash_wf face-cube_wf list-diff-subset nameset_subtype cons_wf cname_deq_wf list-diff_wf name-morph_subtype poset-cat-arrow-iff member-poset-cat-arrow int_formula_prop_not_lemma intformnot_wf istype-le subtype_rel_dep_function isname_wf all_wf extd-nameset_wf decidable__le sq_stable__le sq_stable__l_member assert_wf iff_weakening_uiff assert-bnot bool_wf bool_cases_sqequal bool_subtype_base eqff_to_assert istype-false assert-eq-cname eqtt_to_assert eq-cname_wf functor-ob_wf functor-arrow_wf sq_stable__face-compatible face-compatible_wf sq_stable__pairwise face-compatible-symmetry intformeq_wf int_formula_prop_eq_lemma decidable__equal_int ob_pair_lemma ob_mk_functor_lemma face-map-comp-id int_seg_cases int_seg_subtype_special cat-functor_wf istype-universe le_reflexive I-cube_wf nameset_subtype_base arrow_mk_functor_lemma arrow_pair_lemma cat_ob_pair_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma extd-nameset_subtype_int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt productElimination applyEquality sqequalRule lambdaEquality_alt setElimination rename imageElimination because_Cache baseClosed universeIsType independent_isectElimination inhabitedIsType unionElimination dependent_functionElimination isect_memberEquality_alt voidElimination natural_numberEquality equalityTransitivity equalitySymmetry applyLambdaEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation promote_hyp hypothesis_subsumption inrFormation_alt equalityIstype dependent_set_memberEquality_alt productIsType axiomEquality isectIsTypeImplies functionIsTypeImplies unionIsType setIsType functionIsType sqequalBase independent_pairEquality intEquality instantiate cumulativity closedConclusion productEquality imageMemberEquality functionEquality equalityIsType1 equalityIsType3 equalityElimination hyp_replacement universeEquality dependent_pairEquality_alt

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[y:nameset(I)].  \mforall{}[c:\{c:name-morph(I;[])|  (c  y)  =  0\}  ].
    \mforall{}f:I-face(cubical-nerve(C);I)
        (cube(f)  c  flip(c;y)  (\mlambda{}x.Ax))  =  nerve\_box\_edge(box;c;y) 
        supposing  (f  \mmember{}  box)
        \mwedge{}  (direction(f)  =  (c  dimension(f)))
        \mwedge{}  (direction(f)  =  (flip(c;y)  dimension(f))) 
    supposing  (\mexists{}j\mmember{}J.  \mneg{}(j  =  y))  \mvee{}  (((c  x)  =  i)  \mwedge{}  (\mneg{}\muparrow{}null(J)))



Date html generated: 2020_05_21-AM-10_55_18
Last ObjectModification: 2019_12_08-PM-07_05_29

Theory : cubical!sets


Home Index