Step
*
of Lemma
nerve_box_edge_same1
No Annotations
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[y:nameset(I)]. ∀[c:{c:name-morph(I;[])| (c y) = 0 ∈ ℕ2} ].
∀f:I-face(cubical-nerve(C);I)
(cube(f) c flip(c;y) (λx.Ax))
= nerve_box_edge(box;c;y)
∈ (cat-arrow(C) nerve_box_label(box;c) nerve_box_label(box;flip(c;y)))
supposing (f ∈ box) ∧ (direction(f) = (c dimension(f)) ∈ ℕ2) ∧ (direction(f) = (flip(c;y) dimension(f)) ∈ ℕ2)
supposing (∃j∈J. ¬(j = y ∈ Cname)) ∨ (((c x) = i ∈ ℕ2) ∧ (¬↑null(J)))
BY
{ (InstLemma `nerve_box_label_same` []
THEN RepeatFor 6 (ParallelLast')
THEN Auto
THEN Unfold `nerve_box_edge` 0
THEN (GenConclTerm ⌜nerve-box-common-face(box;c;y)⌝⋅ THENA (Try (BLemma `nerve-box-common-face_wf2`) THEN Auto))
THEN D -2
THEN (Assert ¬↑null(J) BY
(SplitOrHyps THEN Auto THEN (DVar `J' THEN D 9) THEN All Reduce THEN Auto))
THEN (Assert (cube(v) c) = nerve_box_label(box;c) ∈ cat-ob(C) BY
(BackThruSomeHyp THEN Auto))
THEN (Assert (cube(v) flip(c;y)) = nerve_box_label(box;flip(c;y)) ∈ cat-ob(C) BY
(BackThruSomeHyp THEN Auto))
THEN SubsumeC ⌜cat-arrow(C) (cube(v) c) (cube(v) flip(c;y))⌝⋅
THEN Try ((BLemma `subtype_rel-equal` THEN Auto))
THEN RenameTo `g' `v') }
1
1. C : SmallCategory
2. I : Cname List
3. J : nameset(I) List
4. x : nameset(I)
5. i : ℕ2
6. box : open_box(cubical-nerve(C);I;J;x;i)
7. ∀[L:name-morph(I;[])]
∀f:I-face(cubical-nerve(C);I)
((cube(f) L) = nerve_box_label(box;L) ∈ cat-ob(C)) supposing
((f ∈ box) and
(direction(f) = (L dimension(f)) ∈ ℕ2))
supposing ((L x) = i ∈ ℕ2) ∨ (¬↑null(J))
8. y : nameset(I)
9. c : {c:name-morph(I;[])| (c y) = 0 ∈ ℕ2}
10. (∃j∈J. ¬(j = y ∈ Cname)) ∨ (((c x) = i ∈ ℕ2) ∧ (¬↑null(J)))
11. f : I-face(cubical-nerve(C);I)
12. (f ∈ box)
13. direction(f) = (c dimension(f)) ∈ ℕ2
14. direction(f) = (flip(c;y) dimension(f)) ∈ ℕ2
15. g : I-face(cubical-nerve(C);I)
16. (g ∈ box) ∧ (direction(g) = (c dimension(g)) ∈ ℕ2) ∧ (direction(g) = (flip(c;y) dimension(g)) ∈ ℕ2)
17. nerve-box-common-face(box;c;y)
= g
∈ {f:I-face(cubical-nerve(C);I)|
(f ∈ box) ∧ (direction(f) = (c dimension(f)) ∈ ℕ2) ∧ (direction(f) = (flip(c;y) dimension(f)) ∈ ℕ2)}
18. ¬↑null(J)
19. (cube(g) c) = nerve_box_label(box;c) ∈ cat-ob(C)
20. (cube(g) flip(c;y)) = nerve_box_label(box;flip(c;y)) ∈ cat-ob(C)
⊢ (cube(f) c flip(c;y) (λx.Ax)) = (cube(g) c flip(c;y) (λx.Ax)) ∈ (cat-arrow(C) (cube(g) c) (cube(g) flip(c;y)))
Latex:
Latex:
No Annotations
\mforall{}[C:SmallCategory]. \mforall{}[I:Cname List]. \mforall{}[J:nameset(I) List]. \mforall{}[x:nameset(I)]. \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)]. \mforall{}[y:nameset(I)]. \mforall{}[c:\{c:name-morph(I;[])| (c y) = 0\} ].
\mforall{}f:I-face(cubical-nerve(C);I)
(cube(f) c flip(c;y) (\mlambda{}x.Ax)) = nerve\_box\_edge(box;c;y)
supposing (f \mmember{} box)
\mwedge{} (direction(f) = (c dimension(f)))
\mwedge{} (direction(f) = (flip(c;y) dimension(f)))
supposing (\mexists{}j\mmember{}J. \mneg{}(j = y)) \mvee{} (((c x) = i) \mwedge{} (\mneg{}\muparrow{}null(J)))
By
Latex:
(InstLemma `nerve\_box\_label\_same` []
THEN RepeatFor 6 (ParallelLast')
THEN Auto
THEN Unfold `nerve\_box\_edge` 0
THEN (GenConclTerm \mkleeneopen{}nerve-box-common-face(box;c;y)\mkleeneclose{}\mcdot{}
THENA (Try (BLemma `nerve-box-common-face\_wf2`) THEN Auto)
)
THEN D -2
THEN (Assert \mneg{}\muparrow{}null(J) BY
(SplitOrHyps THEN Auto THEN (DVar `J' THEN D 9) THEN All Reduce THEN Auto))
THEN (Assert (cube(v) c) = nerve\_box\_label(box;c) BY
(BackThruSomeHyp THEN Auto))
THEN (Assert (cube(v) flip(c;y)) = nerve\_box\_label(box;flip(c;y)) BY
(BackThruSomeHyp THEN Auto))
THEN SubsumeC \mkleeneopen{}cat-arrow(C) (cube(v) c) (cube(v) flip(c;y))\mkleeneclose{}\mcdot{}
THEN Try ((BLemma `subtype\_rel-equal` THEN Auto))
THEN RenameTo `g' `v')
Home
Index