Nuprl Lemma : functor-ob_wf
∀[C,D:SmallCategory]. ∀[F:Functor(C;D)].  (ob(F) ∈ cat-ob(C) ⟶ cat-ob(D))
Proof
Definitions occuring in Statement : 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
pi1: fst(t)
, 
cat-functor: Functor(C1;C2)
, 
functor-ob: ob(F)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-functor_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
isectElimination, 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].    (ob(F)  \mmember{}  cat-ob(C)  {}\mrightarrow{}  cat-ob(D))
Date html generated:
2020_05_20-AM-07_50_50
Last ObjectModification:
2015_12_28-PM-02_23_56
Theory : small!categories
Home
Index