Nuprl Lemma : face-map-comp-id

A,B:Cname List. ∀g:name-morph(A;B). ∀x:nameset(A). ∀i:ℕ2.
  ((x:=i) g) g ∈ name-morph(A;B) supposing (¬↑isname(g x)) ∧ ((g x) i ∈ ℕ2)


Proof




Definitions occuring in Statement :  name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} assert: b uimplies: supposing a all: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a and: P ∧ Q not: ¬A implies:  Q uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) false: False uiff: uiff(P;Q) subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T istype: istype(T) name-comp: (f g) compose: g face-map: (x:=i) nameset: nameset(L) coordinate_name: Cname int_upper: {i...} uext: uext(g) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  istype-assert isname_wf istype-void not-assert-isname set_subtype_base lelt_wf istype-int int_subtype_base int_seg_wf nameset_wf name-morph_wf list_wf coordinate_name_wf name-morphs-equal uext_wf ifthenelse_wf eq_int_wf extd-nameset_wf nsub2_subtype_extd-nameset nameset_subtype_extd-nameset eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not_assert_elim equal_functionality_wrt_subtype_rel2 isname-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut hypothesis sqequalRule productIsType functionIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality setElimination rename because_Cache productElimination independent_isectElimination equalityIstype inhabitedIsType equalityTransitivity equalitySymmetry intEquality lambdaEquality_alt natural_numberEquality imageElimination sqequalBase universeIsType functionExtensionality unionElimination equalityElimination dependent_pairFormation_alt promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination

Latex:
\mforall{}A,B:Cname  List.  \mforall{}g:name-morph(A;B).  \mforall{}x:nameset(A).  \mforall{}i:\mBbbN{}2.
    ((x:=i)  o  g)  =  g  supposing  (\mneg{}\muparrow{}isname(g  x))  \mwedge{}  ((g  x)  =  i)



Date html generated: 2020_05_21-AM-10_48_28
Last ObjectModification: 2019_12_08-PM-07_06_43

Theory : cubical!sets


Home Index