Nuprl Lemma : sq_stable__pairwise

[T:Type]. ∀L:T List. ∀P:T ⟶ T ⟶ ℙ'.  ((∀x,y:T.  SqStable(P[x;y]))  SqStable((∀x,y∈L.  P[x;y])))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  pairwise: (∀x,y∈L.  P[x; y]) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: less_than: a < b squash: T so_apply: x[s]
Lemmas referenced :  list_wf sq_stable_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf all_wf length_wf int_seg_wf sq_stable__all
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity natural_numberEquality hypothesisEquality hypothesis lambdaEquality setElimination rename applyEquality universeEquality independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache imageElimination independent_functionElimination introduction functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}'.    ((\mforall{}x,y:T.    SqStable(P[x;y]))  {}\mRightarrow{}  SqStable((\mforall{}x,y\mmember{}L.    P[x;y])))



Date html generated: 2016_05_14-PM-01_49_10
Last ObjectModification: 2016_01_15-AM-08_17_46

Theory : list_1


Home Index