Nuprl Lemma : cat-ob_wf
∀[C:SmallCategory]. (cat-ob(C) ∈ Type)
Proof
Definitions occuring in Statement : 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
spreadn: spread4, 
pi1: fst(t)
, 
small-category: SmallCategory
, 
cat-ob: cat-ob(C)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf
Rules used in proof : 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  (cat-ob(C)  \mmember{}  Type)
Date html generated:
2020_05_20-AM-07_49_27
Last ObjectModification:
2015_12_28-PM-02_24_11
Theory : small!categories
Home
Index