Nuprl Lemma : cat-ob_wf

[C:SmallCategory]. (cat-ob(C) ∈ Type)


Proof




Definitions occuring in Statement :  cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  spreadn: spread4 pi1: fst(t) small-category: SmallCategory cat-ob: cat-ob(C) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf
Rules used in proof :  lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality cumulativity productElimination rename thin setElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  (cat-ob(C)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-07_49_27
Last ObjectModification: 2015_12_28-PM-02_24_11

Theory : small!categories


Home Index