Nuprl Lemma : functor-arrow_wf
∀[C,D:SmallCategory]. ∀[F:Functor(C;D)].
  (arrow(F) ∈ x:cat-ob(C) ⟶ y:cat-ob(C) ⟶ (cat-arrow(C) x y) ⟶ (cat-arrow(D) (F x) (F y)))
Proof
Definitions occuring in Statement : 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
pi1: fst(t)
, 
functor-ob: ob(F)
, 
pi2: snd(t)
, 
cat-functor: Functor(C1;C2)
, 
functor-arrow: arrow(F)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-functor_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
isectElimination, 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].
    (arrow(F)  \mmember{}  x:cat-ob(C)  {}\mrightarrow{}  y:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(C)  x  y)  {}\mrightarrow{}  (cat-arrow(D)  (F  x)  (F  y)))
Date html generated:
2020_05_20-AM-07_50_54
Last ObjectModification:
2015_12_28-PM-02_23_51
Theory : small!categories
Home
Index