Nuprl Lemma : poset-cat-arrow-iff

[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].  uiff(cat-arrow(poset-cat(I)) y;{∀i:nameset(I). ((x i) ≤ (y i))})


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) nameset: nameset(L) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) list: List uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} le: A ≤ B all: x:A. B[x] apply: a
Definitions unfolded in proof :  guard: {T} poset-cat: poset-cat(J) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] name-morph: name-morph(I;J) subtype_rel: A ⊆B le: A ≤ B not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  assert_of_le_int nameset_wf less_than'_wf all_wf assert_wf le_int_wf assert_witness le_wf name-morph_wf nil_wf coordinate_name_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lemma_by_obid isectElimination applyEquality setElimination rename because_Cache productElimination independent_isectElimination lambdaEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination isect_memberEquality voidElimination

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].
    uiff(cat-arrow(poset-cat(I))  x  y;\{\mforall{}i:nameset(I).  ((x  i)  \mleq{}  (y  i))\})



Date html generated: 2016_06_16-PM-06_52_36
Last ObjectModification: 2015_12_28-PM-04_22_50

Theory : cubical!sets


Home Index