Nuprl Lemma : member-poset-cat-arrow

[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].  λx.Ax ∈ cat-arrow(poset-cat(I)) supposing cat-arrow(poset-cat(I)) y


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) list: List uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  poset-cat-arrow-equals cat-arrow_wf poset-cat_wf cat-ob_wf list_wf coordinate_name_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction rename equalityTransitivity equalitySymmetry sqequalRule axiomEquality applyEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].
    \mlambda{}x.Ax  \mmember{}  cat-arrow(poset-cat(I))  x  y  supposing  cat-arrow(poset-cat(I))  x  y



Date html generated: 2016_06_16-PM-06_52_47
Last ObjectModification: 2015_12_28-PM-04_22_32

Theory : cubical!sets


Home Index