Nuprl Lemma : poset-cat-arrow-equals
∀[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))]. ∀[a:cat-arrow(poset-cat(I)) x y].
  (a = (λx.Ax) ∈ (cat-arrow(poset-cat(I)) x y))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
, 
axiom: Ax
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
poset-cat: poset-cat(J)
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cat-ob: cat-ob(C)
, 
all: ∀x:A. B[x]
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
poset-cat-arrow-unique, 
cat-arrow_wf, 
poset-cat_wf, 
cat-ob_wf, 
list_wf, 
coordinate_name_wf, 
assert_witness, 
le_int_wf, 
extd-nameset_subtype_int, 
nil_wf, 
nameset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
applyEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].  \mforall{}[a:cat-arrow(poset-cat(I))  x  y].    (a  =  (\mlambda{}x.Ax))
Date html generated:
2020_05_21-AM-10_52_41
Last ObjectModification:
2020_02_07-PM-08_17_03
Theory : cubical!sets
Home
Index