Nuprl Lemma : poset-cat-arrow-unique
∀[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))]. ∀[a,b:cat-arrow(poset-cat(I)) x y].
  (a = b ∈ (cat-arrow(poset-cat(I)) x y))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J)
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
poset-cat: poset-cat(J)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
assert: ↑b
, 
prop: ℙ
, 
false: False
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
true: True
Lemmas referenced : 
assert_wf, 
le_int_wf, 
equal_wf, 
nameset_wf, 
extd-nameset_subtype_int, 
nil_wf, 
coordinate_name_wf, 
name-morph_wf, 
list_wf, 
bnot_wf, 
not_wf, 
le_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
equalityElimination
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].  \mforall{}[a,b:cat-arrow(poset-cat(I))  x  y].    (a  =  b)
Date html generated:
2016_06_16-PM-06_52_24
Last ObjectModification:
2015_12_28-PM-04_22_55
Theory : cubical!sets
Home
Index