Nuprl Lemma : poset-cat-arrow-unique

[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))]. ∀[a,b:cat-arrow(poset-cat(I)) y].
  (a b ∈ (cat-arrow(poset-cat(I)) y))


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) list: List uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  poset-cat: poset-cat(J) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) subtype_rel: A ⊆B implies:  Q assert: b prop: false: False or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bfalse: ff true: True
Lemmas referenced :  assert_wf le_int_wf equal_wf nameset_wf extd-nameset_subtype_int nil_wf coordinate_name_wf name-morph_wf list_wf bnot_wf not_wf le_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_le_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut functionExtensionality applyEquality hypothesisEquality thin lemma_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesis because_Cache lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality isect_memberEquality axiomEquality voidElimination unionElimination instantiate cumulativity independent_isectElimination productElimination independent_pairFormation impliesFunctionality equalityElimination

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].  \mforall{}[a,b:cat-arrow(poset-cat(I))  x  y].    (a  =  b)



Date html generated: 2016_06_16-PM-06_52_24
Last ObjectModification: 2015_12_28-PM-04_22_55

Theory : cubical!sets


Home Index