Nuprl Lemma : cat-arrow_wf

[C:SmallCategory]. (cat-arrow(C) ∈ x:cat-ob(C) ⟶ y:cat-ob(C) ⟶ Type)


Proof




Definitions occuring in Statement :  cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 and: P ∧ Q cat-arrow: cat-arrow(C) all: x:A. B[x] top: Top pi2: snd(t) pi1: fst(t)
Lemmas referenced :  cat_ob_pair_lemma small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality

Latex:
\mforall{}[C:SmallCategory].  (cat-arrow(C)  \mmember{}  x:cat-ob(C)  {}\mrightarrow{}  y:cat-ob(C)  {}\mrightarrow{}  Type)



Date html generated: 2020_05_20-AM-07_49_30
Last ObjectModification: 2017_01_10-PM-06_15_36

Theory : small!categories


Home Index