Nuprl Lemma : nerve-box-common-face_wf2
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[L:cat-ob(poset-cat(I))]. ∀[z:nameset(I)].
  nerve-box-common-face(box;L;z) ∈ {f:I-face(cubical-nerve(C);I)| 
                                    (f ∈ box)
                                    ∧ (direction(f) = (L dimension(f)) ∈ ℕ2)
                                    ∧ (direction(f) = (flip(L;z) dimension(f)) ∈ ℕ2)}  
  supposing (∃j∈J. ¬(j = z ∈ Cname)) ∨ (((L x) = i ∈ ℕ2) ∧ (¬↑null(J)))
Proof
Definitions occuring in Statement : 
nerve-box-common-face: nerve-box-common-face(box;L;z)
, 
cubical-nerve: cubical-nerve(X)
, 
poset-cat: poset-cat(J)
, 
open_box: open_box(X;I;J;x;i)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
name-morph-flip: flip(f;y)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
poset-cat: poset-cat(J)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
open_box: open_box(X;I;J;x;i)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
name-morph: name-morph(I;J)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
prop: ℙ
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
int_seg: {i..j-}
, 
nerve-box-common-face: nerve-box-common-face(box;L;z)
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
nameset: nameset(L)
, 
top: Top
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
, 
l_exists: (∃x∈L. P[x])
, 
less_than: a < b
, 
I-face: I-face(X;I)
, 
face-dimension: dimension(f)
, 
face-direction: direction(f)
, 
face-name: face-name(f)
, 
pi2: snd(t)
, 
sq_type: SQType(T)
, 
name-morph-flip: flip(f;y)
, 
bnot: ¬bb
, 
assert: ↑b
, 
true: True
, 
cons: [a / b]
, 
le: A ≤ B
Lemmas referenced : 
non_null_filter_iff, 
I-face_wf, 
cubical-nerve_wf, 
eq_int_wf, 
face-direction_wf, 
face-dimension_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
name-morph-flip_wf, 
name-morph_wf, 
nil_wf, 
coordinate_name_wf, 
equal_wf, 
hd-wf-not-null, 
filter_wf5, 
l_member_wf, 
int_seg_wf, 
extd-nameset_subtype_int, 
hd_member, 
member_filter, 
or_wf, 
l_exists_wf, 
nameset_wf, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
open_box_wf, 
list_wf, 
small-category_wf, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
l_exists_iff, 
l_member_subtype, 
extd-nameset-nil, 
select_wf, 
length_wf, 
band_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
nameset_subtype_base, 
le_wf, 
eq-cname_wf, 
assert-eq-cname, 
and_wf, 
pi1_wf_top, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
cons_member, 
cons_wf, 
subtype_rel_product, 
pi2_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
lambdaEquality, 
applyEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
setEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyLambdaEquality, 
independent_pairEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
hyp_replacement, 
hypothesis_subsumption, 
inlFormation
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[L:cat-ob(poset-cat(I))].  \mforall{}[z:nameset(I)].
    nerve-box-common-face(box;L;z)  \mmember{}  \{f:I-face(cubical-nerve(C);I)| 
                                                                        (f  \mmember{}  box)
                                                                        \mwedge{}  (direction(f)  =  (L  dimension(f)))
                                                                        \mwedge{}  (direction(f)  =  (flip(L;z)  dimension(f)))\}   
    supposing  (\mexists{}j\mmember{}J.  \mneg{}(j  =  z))  \mvee{}  (((L  x)  =  i)  \mwedge{}  (\mneg{}\muparrow{}null(J)))
Date html generated:
2017_10_05-PM-03_36_46
Last ObjectModification:
2017_07_28-AM-11_25_19
Theory : cubical!sets
Home
Index