Nuprl Lemma : hd-wf-not-null

[A:Type]. ∀[l:A List].  hd(l) ∈ supposing ¬↑null(l)


Proof




Definitions occuring in Statement :  hd: hd(l) null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A implies:  Q true: True false: False cons: [a b] top: Top bfalse: ff guard: {T} nat: ge: i ≥  decidable: Dec(P) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  hd_wf list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma length_wf_nat nat_wf decidable__le false_wf not-ge-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 equal_wf not_wf assert_wf null_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality independent_isectElimination hypothesis dependent_functionElimination unionElimination sqequalRule independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality lambdaFormation setElimination rename addEquality independent_pairFormation imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    hd(l)  \mmember{}  A  supposing  \mneg{}\muparrow{}null(l)



Date html generated: 2017_04_14-AM-09_26_30
Last ObjectModification: 2017_02_27-PM-04_00_41

Theory : list_1


Home Index