Nuprl Lemma : same-face-edge-arrows-commute
∀C:SmallCategory. ∀I:Cname List. ∀f:name-morph(I;[]). ∀a,b:nameset(I). ∀v:I-face(cubical-nerve(C);I).
  (((f a) = 0 ∈ ℕ2)
  
⇒ ((f b) = 0 ∈ ℕ2)
  
⇒ (¬(a = b ∈ nameset(I)))
  
⇒ (¬(dimension(v) = a ∈ Cname))
  
⇒ (¬(dimension(v) = b ∈ Cname))
  
⇒ ((cat-comp(C) (ob(cube(v)) f) (ob(cube(v)) flip(f;a)) (ob(cube(v)) flip(flip(f;a);b)) 
       (arrow(cube(v)) f flip(f;a) (λx.Ax)) 
       (arrow(cube(v)) flip(f;a) flip(flip(f;a);b) (λx.Ax)))
     = (cat-comp(C) (ob(cube(v)) f) (ob(cube(v)) flip(f;b)) (ob(cube(v)) flip(flip(f;b);a)) 
        (arrow(cube(v)) f flip(f;b) (λx.Ax)) 
        (arrow(cube(v)) flip(f;b) flip(flip(f;b);a) (λx.Ax)))
     ∈ (cat-arrow(C) (ob(cube(v)) f) (ob(cube(v)) flip(flip(f;a);b)))))
Proof
Definitions occuring in Statement : 
cubical-nerve: cubical-nerve(X)
, 
face-cube: cube(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
name-morph-flip: flip(f;y)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
small-category: SmallCategory
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
axiom: Ax
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
I-face: I-face(X;I)
, 
face-cube: cube(f)
, 
pi2: snd(t)
, 
face-dimension: dimension(f)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
cat-functor: Functor(C1;C2)
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
name-morph: name-morph(I;J)
, 
cat-comp: cat-comp(C)
, 
poset-cat: poset-cat(J)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
cat-id: cat-id(C)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
name-morph-flip: flip(f;y)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
sq_type: SQType(T)
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
false: False
, 
not: ¬A
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
label: ...$L... t
Lemmas referenced : 
cubical-nerve-I-cube, 
not_wf, 
equal_wf, 
coordinate_name_wf, 
face-dimension_wf, 
cubical-nerve_wf, 
nameset_wf, 
equal-wf-T-base, 
int_seg_wf, 
extd-nameset-nil, 
I-face_wf, 
name-morph_wf, 
nil_wf, 
list_wf, 
small-category_wf, 
all_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
le_wf, 
assert_witness, 
le_int_wf, 
extd-nameset_subtype_int, 
assert_of_le_int, 
name-morph_subtype, 
nameset_subtype, 
list-diff-subset, 
name-morph-flip_wf, 
eq-cname_wf, 
bool_wf, 
eqtt_to_assert, 
assert-eq-cname, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
lelt_wf, 
false_wf, 
subtract_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
int_seg_properties, 
decidable__le, 
l_member_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__equal_int, 
intformand_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
le_reflexive, 
squash_wf, 
true_wf, 
cat-arrow_wf, 
cat-ob_wf, 
poset-cat_wf, 
subtype_rel_self, 
extd-nameset_wf, 
assert_wf, 
isname_wf, 
name-morph-flips-commute, 
iff_weakening_equal, 
nameset_subtype_base, 
le_weakening, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
because_Cache, 
natural_numberEquality, 
baseClosed, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
imageMemberEquality, 
imageElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
int_eqEquality, 
computeAll, 
hyp_replacement, 
universeEquality, 
functionExtensionality, 
setEquality, 
functionEquality
Latex:
\mforall{}C:SmallCategory.  \mforall{}I:Cname  List.  \mforall{}f:name-morph(I;[]).  \mforall{}a,b:nameset(I).
\mforall{}v:I-face(cubical-nerve(C);I).
    (((f  a)  =  0)
    {}\mRightarrow{}  ((f  b)  =  0)
    {}\mRightarrow{}  (\mneg{}(a  =  b))
    {}\mRightarrow{}  (\mneg{}(dimension(v)  =  a))
    {}\mRightarrow{}  (\mneg{}(dimension(v)  =  b))
    {}\mRightarrow{}  ((cat-comp(C)  (ob(cube(v))  f)  (ob(cube(v))  flip(f;a))  (ob(cube(v))  flip(flip(f;a);b)) 
              (arrow(cube(v))  f  flip(f;a)  (\mlambda{}x.Ax)) 
              (arrow(cube(v))  flip(f;a)  flip(flip(f;a);b)  (\mlambda{}x.Ax)))
          =  (cat-comp(C)  (ob(cube(v))  f)  (ob(cube(v))  flip(f;b))  (ob(cube(v))  flip(flip(f;b);a)) 
                (arrow(cube(v))  f  flip(f;b)  (\mlambda{}x.Ax)) 
                (arrow(cube(v))  flip(f;b)  flip(flip(f;b);a)  (\mlambda{}x.Ax)))))
Date html generated:
2017_10_05-PM-03_37_25
Last ObjectModification:
2017_07_28-AM-11_25_34
Theory : cubical!sets
Home
Index