Step
*
of Lemma
same-face-square-commutes
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List].
∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[f,g,h,k:name-morph(I;[])].
∀a,b:nameset(I).
nerve_box_edge(box;f;a) o nerve_box_edge(box;g;b) = nerve_box_edge(box;f;b) o nerve_box_edge(box;h;a)
supposing (((¬(a = b ∈ nameset(I))) ∧ ((f a) = 0 ∈ ℕ2))
∧ ((f b) = 0 ∈ ℕ2)
∧ (g = flip(f;a) ∈ name-morph(I;[]))
∧ (h = flip(f;b) ∈ name-morph(I;[]))
∧ (k = flip(flip(f;a);b) ∈ name-morph(I;[])))
∧ (∃v:I-face(cubical-nerve(C);I)
((v ∈ box)
∧ (¬(dimension(v) = b ∈ Cname))
∧ (¬(dimension(v) = a ∈ Cname))
∧ (direction(v) = (f dimension(v)) ∈ ℕ2)))
supposing (∃j1∈J. (∃j2∈J. ¬(j1 = j2 ∈ Cname)))
BY
{ (InstLemma `same-face-edge-arrows-commute3` []
THEN RepeatFor 3 (ParallelLast')
THEN Intro
THEN D -2
THEN Try (Trivial)
THEN RepeatFor 4 (ParallelLast')
THEN RepeatFor 3 (Intro)
THEN ParallelOp -4
THEN Thin (-6)
THEN RepeatFor 2 (ParallelLast')
THEN Auto
THEN (Assert ¬↑null(J) BY
(DVar `J' THEN D 3 THEN All Reduce THEN Auto))
THEN Unfold `cat-square-commutes` 0
THEN NthHypEq (-2)
THEN skip{(Repeat ((EqCD
THEN Try (Trivial)
THEN Try ((Fold `member` 0 THEN Auto))
THEN Try (((OrRight THENM Trivial) THEN Auto))))
THEN Try ((DoSubsume THEN Try (BLemma `subtype_rel-equal`) THEN Auto))
)}) }
1
.....assertion.....
1. C : SmallCategory
2. I : Cname List
3. J : nameset(I) List
4. (∃j1∈J. (∃j2∈J. ¬(j1 = j2 ∈ Cname)))
5. x : nameset(I)
6. i : ℕ2
7. box : open_box(cubical-nerve(C);I;J;x;i)
8. f : name-morph(I;[])
9. g : name-morph(I;[])
10. h : name-morph(I;[])
11. k : name-morph(I;[])
12. a : nameset(I)
13. b : nameset(I)
14. ¬(a = b ∈ nameset(I))
15. (f a) = 0 ∈ ℕ2
16. (f b) = 0 ∈ ℕ2
17. g = flip(f;a) ∈ name-morph(I;[])
18. h = flip(f;b) ∈ name-morph(I;[])
19. k = flip(flip(f;a);b) ∈ name-morph(I;[])
20. ∃v:I-face(cubical-nerve(C);I)
((v ∈ box)
∧ (¬(dimension(v) = b ∈ Cname))
∧ (¬(dimension(v) = a ∈ Cname))
∧ (direction(v) = (f dimension(v)) ∈ ℕ2))
21. (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))
22. ¬↑null(J)
⊢ ((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;g) nerve_box_label(box;k) nerve_box_edge(box;f;a)
nerve_box_edge(box;g;b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;h) nerve_box_label(box;k) nerve_box_edge(box;f;b)
nerve_box_edge(box;h;a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;k)))
= ((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b))
nerve_box_edge(box;f;a)
nerve_box_edge(box;flip(f;a);b))
= (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a))
nerve_box_edge(box;f;b)
nerve_box_edge(box;flip(f;b);a))
∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b))))
∈ ℙ
Latex:
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[I:Cname List]. \mforall{}[J:nameset(I) List].
\mforall{}[x:nameset(I)]. \mforall{}[i:\mBbbN{}2]. \mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)]. \mforall{}[f,g,h,k:name-morph(I;[])].
\mforall{}a,b:nameset(I).
nerve\_box\_edge(box;f;a) o nerve\_box\_edge(box;g;b)
= nerve\_box\_edge(box;f;b) o nerve\_box\_edge(box;h;a)
supposing (((\mneg{}(a = b)) \mwedge{} ((f a) = 0))
\mwedge{} ((f b) = 0)
\mwedge{} (g = flip(f;a))
\mwedge{} (h = flip(f;b))
\mwedge{} (k = flip(flip(f;a);b)))
\mwedge{} (\mexists{}v:I-face(cubical-nerve(C);I)
((v \mmember{} box)
\mwedge{} (\mneg{}(dimension(v) = b))
\mwedge{} (\mneg{}(dimension(v) = a))
\mwedge{} (direction(v) = (f dimension(v)))))
supposing (\mexists{}j1\mmember{}J. (\mexists{}j2\mmember{}J. \mneg{}(j1 = j2)))
By
Latex:
(InstLemma `same-face-edge-arrows-commute3` []
THEN RepeatFor 3 (ParallelLast')
THEN Intro
THEN D -2
THEN Try (Trivial)
THEN RepeatFor 4 (ParallelLast')
THEN RepeatFor 3 (Intro)
THEN ParallelOp -4
THEN Thin (-6)
THEN RepeatFor 2 (ParallelLast')
THEN Auto
THEN (Assert \mneg{}\muparrow{}null(J) BY
(DVar `J' THEN D 3 THEN All Reduce THEN Auto))
THEN Unfold `cat-square-commutes` 0
THEN NthHypEq (-2)
THEN skip\{(Repeat ((EqCD
THEN Try (Trivial)
THEN Try ((Fold `member` 0 THEN Auto))
THEN Try (((OrRight THENM Trivial) THEN Auto))))
THEN Try ((DoSubsume THEN Try (BLemma `subtype\_rel-equal`) THEN Auto))
)\})
Home
Index