Nuprl Lemma : same-face-square-commutes

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List].
  ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[f,g,h,k:name-morph(I;[])].
    ∀a,b:nameset(I).
      nerve_box_edge(box;f;a) nerve_box_edge(box;g;b) nerve_box_edge(box;f;b) nerve_box_edge(box;h;a) 
      supposing (((¬(a b ∈ nameset(I))) ∧ ((f a) 0 ∈ ℕ2))
      ∧ ((f b) 0 ∈ ℕ2)
      ∧ (g flip(f;a) ∈ name-morph(I;[]))
      ∧ (h flip(f;b) ∈ name-morph(I;[]))
      ∧ (k flip(flip(f;a);b) ∈ name-morph(I;[])))
      ∧ (∃v:I-face(cubical-nerve(C);I)
          ((v ∈ box)
          ∧ (dimension(v) b ∈ Cname))
          ∧ (dimension(v) a ∈ Cname))
          ∧ (direction(v) (f dimension(v)) ∈ ℕ2))) 
  supposing (∃j1∈J. (∃j2∈J. ¬(j1 j2 ∈ Cname)))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-square-commutes: x_y1 y1_z x_y2 y2_z small-category: SmallCategory l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B or: P ∨ Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] assert: b ifthenelse: if then else fi  btrue: tt guard: {T} int_seg: {i..j-} lelt: i ≤ j < k nameset: nameset(L) false: False coordinate_name: Cname int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A prop: cons: [a b] bfalse: ff cat-square-commutes: x_y1 y1_z x_y2 y2_z so_lambda: λ2x.t[x] open_box: open_box(X;I;J;x;i) subtype_rel: A ⊆B name-morph: name-morph(I;J) so_apply: x[s] name-morph-flip: flip(f;y) uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) bool: 𝔹 unit: Unit bnot: ¬bb squash: T true: True decidable: Dec(P)
Lemmas referenced :  same-face-edge-arrows-commute3 nameset_wf list-cases stuck-spread base_wf length_of_nil_lemma null_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf product_subtype_list null_cons_lemma false_wf not_wf equal_wf equal-wf-T-base name-morph_wf nil_wf coordinate_name_wf name-morph-flip_wf exists_wf I-face_wf cubical-nerve_wf l_member_wf face-dimension_wf int_seg_wf face-direction_wf open_box_wf subtype_rel_list l_exists_wf list_wf small-category_wf subtype_base_sq bool_wf bool_subtype_base eqff_to_assert eq-cname_wf iff_transitivity assert_wf bnot_wf iff_weakening_uiff assert_of_bnot assert-eq-cname set_subtype_base le_wf int_subtype_base extd-nameset-nil eqtt_to_assert bool_cases_sqequal assert-bnot squash_wf true_wf cat-arrow_wf nerve_box_label_wf decidable__assert null_wf3 top_wf or_wf cat-comp_wf nerve_box_edge_wf subtype_rel-equal iff_weakening_equal set_wf cat-ob_wf name-morph-flips-commute
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination dependent_functionElimination lambdaFormation productElimination independent_pairFormation unionElimination sqequalRule baseClosed isect_memberEquality voidElimination voidEquality natural_numberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp hypothesis_subsumption independent_functionElimination hyp_replacement comment axiomEquality productEquality because_Cache applyEquality setEquality dependent_set_memberEquality instantiate cumulativity impliesFunctionality equalityElimination imageElimination universeEquality imageMemberEquality inlFormation inrFormation

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
    \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[f,g,h,k:name-morph(I;[])].
        \mforall{}a,b:nameset(I).
            nerve\_box\_edge(box;f;a)  o  nerve\_box\_edge(box;g;b)
            =  nerve\_box\_edge(box;f;b)  o  nerve\_box\_edge(box;h;a) 
            supposing  (((\mneg{}(a  =  b))  \mwedge{}  ((f  a)  =  0))
            \mwedge{}  ((f  b)  =  0)
            \mwedge{}  (g  =  flip(f;a))
            \mwedge{}  (h  =  flip(f;b))
            \mwedge{}  (k  =  flip(flip(f;a);b)))
            \mwedge{}  (\mexists{}v:I-face(cubical-nerve(C);I)
                    ((v  \mmember{}  box)
                    \mwedge{}  (\mneg{}(dimension(v)  =  b))
                    \mwedge{}  (\mneg{}(dimension(v)  =  a))
                    \mwedge{}  (direction(v)  =  (f  dimension(v))))) 
    supposing  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2)))



Date html generated: 2017_10_05-PM-03_39_28
Last ObjectModification: 2017_07_28-AM-11_26_21

Theory : cubical!sets


Home Index