Nuprl Lemma : same-face-edge-arrows-commute3

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List].
  ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(cubical-nerve(C);I;J;x;i)].
    ∀f:name-morph(I;[]). ∀a,b:nameset(I).
      (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b)) 
       nerve_box_edge(box;f;a) 
       nerve_box_edge(box;flip(f;a);b))
      (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a)) 
         nerve_box_edge(box;f;b) 
         nerve_box_edge(box;flip(f;b);a))
      ∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b))) 
      supposing (((¬(a b ∈ nameset(I))) ∧ ((f a) 0 ∈ ℕ2)) ∧ ((f b) 0 ∈ ℕ2))
      ∧ (∃v:I-face(cubical-nerve(C);I)
          ((v ∈ box)
          ∧ (dimension(v) b ∈ Cname))
          ∧ (dimension(v) a ∈ Cname))
          ∧ (direction(v) (f dimension(v)) ∈ ℕ2))) 
  supposing (∃j1∈J. (∃j2∈J. ¬(j1 j2 ∈ Cname)))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) small-category: SmallCategory l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q exists: x:A. B[x] cand: c∧ B prop: so_lambda: λ2x.t[x] open_box: open_box(X;I;J;x;i) subtype_rel: A ⊆B nameset: nameset(L) name-morph: name-morph(I;J) so_apply: x[s]
Lemmas referenced :  same-face-edge-arrows-commute2 not_wf equal_wf equal-wf-T-base exists_wf I-face_wf cubical-nerve_wf l_member_wf coordinate_name_wf face-dimension_wf int_seg_wf face-direction_wf nameset_wf name-morph_wf nil_wf open_box_wf subtype_rel_list l_exists_wf list_wf small-category_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation dependent_functionElimination productElimination independent_pairFormation productEquality because_Cache sqequalRule lambdaEquality setElimination rename applyEquality natural_numberEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry setEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
    \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].
        \mforall{}f:name-morph(I;[]).  \mforall{}a,b:nameset(I).
            (cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;a)) 
              nerve\_box\_label(box;flip(flip(f;a);b)) 
              nerve\_box\_edge(box;f;a) 
              nerve\_box\_edge(box;flip(f;a);b))
            =  (cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;b)) 
                  nerve\_box\_label(box;flip(flip(f;b);a)) 
                  nerve\_box\_edge(box;f;b) 
                  nerve\_box\_edge(box;flip(f;b);a)) 
            supposing  (((\mneg{}(a  =  b))  \mwedge{}  ((f  a)  =  0))  \mwedge{}  ((f  b)  =  0))
            \mwedge{}  (\mexists{}v:I-face(cubical-nerve(C);I)
                    ((v  \mmember{}  box)
                    \mwedge{}  (\mneg{}(dimension(v)  =  b))
                    \mwedge{}  (\mneg{}(dimension(v)  =  a))
                    \mwedge{}  (direction(v)  =  (f  dimension(v))))) 
    supposing  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2)))



Date html generated: 2017_10_05-PM-03_39_06
Last ObjectModification: 2017_07_28-AM-11_26_16

Theory : cubical!sets


Home Index