Nuprl Lemma : same-face-edge-arrows-commute2

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List].
  ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(cubical-nerve(C);I;J;x;i)].
    ∀f:name-morph(I;[]). ∀a,b:nameset(I).
      ∀[v:I-face(cubical-nerve(C);I)]
        ((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b)) 
          nerve_box_edge(box;f;a) 
          nerve_box_edge(box;flip(f;a);b))
           (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a)) 
              nerve_box_edge(box;f;b) 
              nerve_box_edge(box;flip(f;b);a))
           ∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing 
           ((v ∈ box) and 
           (dimension(v) b ∈ Cname)) and 
           (dimension(v) a ∈ Cname)) and 
           (a b ∈ nameset(I))) and 
           ((f b) 0 ∈ ℕ2) and 
           (((f a) 0 ∈ ℕ2) ∧ (direction(v) (f dimension(v)) ∈ ℕ2))) 
  supposing (∃j1∈J. (∃j2∈J. ¬(j1 j2 ∈ Cname)))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) small-category: SmallCategory l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B nameset: nameset(L) prop: open_box: open_box(X;I;J;x;i) name-morph: name-morph(I;J) so_lambda: λ2x.t[x] so_apply: x[s] l_exists: (∃x∈L. P[x]) exists: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b
Lemmas referenced :  same-face-edge-arrows-commute1 nameset_wf name-morph_wf nil_wf coordinate_name_wf open_box_wf cubical-nerve_wf subtype_rel_list int_seg_wf l_member_wf I-face_wf not_wf equal_wf face-dimension_wf equal-wf-T-base extd-nameset-nil face-direction_wf l_exists_wf list_wf small-category_wf decidable__equal-coordinate_name select_wf sq_stable__l_member sq_stable__le int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma le_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality promote_hyp lambdaFormation dependent_functionElimination independent_isectElimination independent_pairFormation applyEquality lambdaEquality setElimination rename because_Cache sqequalRule natural_numberEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry baseClosed productEquality setEquality productElimination independent_functionElimination imageMemberEquality imageElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
    \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].
        \mforall{}f:name-morph(I;[]).  \mforall{}a,b:nameset(I).
            \mforall{}[v:I-face(cubical-nerve(C);I)]
                ((cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;a)) 
                    nerve\_box\_label(box;flip(flip(f;a);b)) 
                    nerve\_box\_edge(box;f;a) 
                    nerve\_box\_edge(box;flip(f;a);b))
                      =  (cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;b)) 
                            nerve\_box\_label(box;flip(flip(f;b);a)) 
                            nerve\_box\_edge(box;f;b) 
                            nerve\_box\_edge(box;flip(f;b);a)))  supposing 
                      ((v  \mmember{}  box)  and 
                      (\mneg{}(dimension(v)  =  b))  and 
                      (\mneg{}(dimension(v)  =  a))  and 
                      (\mneg{}(a  =  b))  and 
                      ((f  b)  =  0)  and 
                      (((f  a)  =  0)  \mwedge{}  (direction(v)  =  (f  dimension(v))))) 
    supposing  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2)))



Date html generated: 2017_10_05-PM-03_39_00
Last ObjectModification: 2017_07_28-AM-11_26_12

Theory : cubical!sets


Home Index