Nuprl Lemma : same-face-edge-arrows-commute1

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(C);I;J;x;i)].
  ∀f:name-morph(I;[]). ∀a,b:nameset(I).
    ∀[v:I-face(cubical-nerve(C);I)]
      ((cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;a)) nerve_box_label(box;flip(flip(f;a);b)) 
        nerve_box_edge(box;f;a) 
        nerve_box_edge(box;flip(f;a);b))
         (cat-comp(C) nerve_box_label(box;f) nerve_box_label(box;flip(f;b)) nerve_box_label(box;flip(flip(f;b);a)) 
            nerve_box_edge(box;f;b) 
            nerve_box_edge(box;flip(f;b);a))
         ∈ (cat-arrow(C) nerve_box_label(box;f) nerve_box_label(box;flip(flip(f;a);b)))) supposing 
         ((v ∈ box) and 
         (dimension(v) b ∈ Cname)) and 
         (dimension(v) a ∈ Cname)) and 
         (a b ∈ nameset(I))) and 
         ((f b) 0 ∈ ℕ2) and 
         (((f a) 0 ∈ ℕ2) ∧ (direction(v) (f dimension(v)) ∈ ℕ2))) 
    supposing (∃j1∈J. ¬(j1 a ∈ Cname)) ∧ (∃j2∈J. ¬(j2 b ∈ Cname))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) small-category: SmallCategory l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a and: P ∧ Q or: P ∨ Q cand: c∧ B prop: subtype_rel: A ⊆B top: Top name-morph: name-morph(I;J) int_seg: {i..j-} open_box: open_box(X;I;J;x;i) nameset: nameset(L) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  same-face-edge-arrows-commute0 not_wf assert_wf null_wf3 subtype_rel_list nameset_wf top_wf equal_wf extd-nameset_subtype_int nil_wf coordinate_name_wf name-morph-flip_wf name-morph_wf int_seg_wf l_member_wf I-face_wf cubical-nerve_wf face-dimension_wf equal-wf-T-base extd-nameset-nil face-direction_wf l_exists_wf open_box_wf list_wf small-category_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination independent_isectElimination productElimination inlFormation independent_pairFormation productEquality applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache sqequalRule intEquality setElimination rename natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry baseClosed setEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].
    \mforall{}f:name-morph(I;[]).  \mforall{}a,b:nameset(I).
        \mforall{}[v:I-face(cubical-nerve(C);I)]
            ((cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;a)) 
                nerve\_box\_label(box;flip(flip(f;a);b)) 
                nerve\_box\_edge(box;f;a) 
                nerve\_box\_edge(box;flip(f;a);b))
                  =  (cat-comp(C)  nerve\_box\_label(box;f)  nerve\_box\_label(box;flip(f;b)) 
                        nerve\_box\_label(box;flip(flip(f;b);a)) 
                        nerve\_box\_edge(box;f;b) 
                        nerve\_box\_edge(box;flip(f;b);a)))  supposing 
                  ((v  \mmember{}  box)  and 
                  (\mneg{}(dimension(v)  =  b))  and 
                  (\mneg{}(dimension(v)  =  a))  and 
                  (\mneg{}(a  =  b))  and 
                  ((f  b)  =  0)  and 
                  (((f  a)  =  0)  \mwedge{}  (direction(v)  =  (f  dimension(v))))) 
        supposing  (\mexists{}j1\mmember{}J.  \mneg{}(j1  =  a))  \mwedge{}  (\mexists{}j2\mmember{}J.  \mneg{}(j2  =  b))



Date html generated: 2017_10_05-PM-03_38_47
Last ObjectModification: 2017_07_28-AM-11_26_02

Theory : cubical!sets


Home Index