Step
*
of Lemma
uniform-Kan-filler_wf
∀[X:CubicalSet]. ∀[filler:I:(Cname List) ⟶ J:(nameset(I) List) ⟶ x:nameset(I) ⟶ i:ℕ2 ⟶ open_box(X;I;J;x;i) ⟶ X(I)].
(uniform-Kan-filler(X;filler) ∈ ℙ)
BY
{ (Auto
THEN Unfold `uniform-Kan-filler` 0
THEN RepeatFor 2 ((RepeatFor 5 (MemCD) THEN Try (QuickAuto)))
THEN (FLemma `assert-isname` [-1] THENA Auto)
THEN (Assert ⌜(nameset([x / J]) ⊆r name-morph-domain(f;I)) ∧ (map(f;J) ∈ nameset(K) List)⌝⋅ THENM Auto)) }
1
.....assertion.....
1. X : CubicalSet
2. filler : I:(Cname List) ⟶ J:(nameset(I) List) ⟶ x:nameset(I) ⟶ i:ℕ2 ⟶ open_box(X;I;J;x;i) ⟶ X(I)
3. I : Cname List
4. J : nameset(I) List
5. x : nameset(I)
6. i : ℕ2
7. bx : open_box(X;I;J;x;i)
8. K : Cname List
9. f : name-morph(I;K)
10. ∀i:nameset(I). ((i ∈ J)
⇒ (↑isname(f i)))
11. ↑isname(f x)
12. f x ∈ nameset(K)
⊢ (nameset([x / J]) ⊆r name-morph-domain(f;I)) ∧ (map(f;J) ∈ nameset(K) List)
Latex:
Latex:
\mforall{}[X:CubicalSet]. \mforall{}[filler:I:(Cname List)
{}\mrightarrow{} J:(nameset(I) List)
{}\mrightarrow{} x:nameset(I)
{}\mrightarrow{} i:\mBbbN{}2
{}\mrightarrow{} open\_box(X;I;J;x;i)
{}\mrightarrow{} X(I)].
(uniform-Kan-filler(X;filler) \mmember{} \mBbbP{})
By
Latex:
(Auto
THEN Unfold `uniform-Kan-filler` 0
THEN RepeatFor 2 ((RepeatFor 5 (MemCD) THEN Try (QuickAuto)))
THEN (FLemma `assert-isname` [-1] THENA Auto)
THEN (Assert \mkleeneopen{}(nameset([x / J]) \msubseteq{}r name-morph-domain(f;I)) \mwedge{} (map(f;J) \mmember{} nameset(K) List)\mkleeneclose{}\mcdot{}
THENM Auto
))
Home
Index