Nuprl Lemma : uniform-Kan-filler_wf

[X:CubicalSet]. ∀[filler:I:(Cname List) ⟶ J:(nameset(I) List) ⟶ x:nameset(I) ⟶ i:ℕ2 ⟶ open_box(X;I;J;x;i) ⟶ X(I)].
  (uniform-Kan-filler(X;filler) ∈ ℙ)


Proof




Definitions occuring in Statement :  uniform-Kan-filler: uniform-Kan-filler(X;filler) open_box: open_box(X;I;J;x;i) I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-Kan-filler: uniform-Kan-filler(X;filler) subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: open_box: open_box(X;I;J;x;i) name-morph-domain: name-morph-domain(f;I) all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q rev_implies:  Q cand: c∧ B coordinate_name: Cname int_upper: {i...} sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True l_subset: l_subset(T;as;bs)
Lemmas referenced :  list_wf coordinate_name_wf nameset_wf int_seg_wf open_box_wf subtype_rel_list I-cube_wf cubical-set_wf l_member_wf assert_wf isname_wf cube-set-restriction_wf assert-isname open_box_image_wf all_wf name-morph_wf equal_wf filter_wf5 cons_wf cons_member member_filter_2 subtype_base_sq set_subtype_base int_subtype_base and_wf extd-nameset_wf assert_elim bool_wf bool_subtype_base list-subtype map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality extract_by_obid isectElimination thin hypothesisEquality natural_numberEquality applyEquality independent_isectElimination lambdaEquality setElimination rename because_Cache isect_memberEquality functionExtensionality productElimination independent_pairFormation dependent_set_memberEquality setEquality dependent_functionElimination independent_functionElimination unionElimination instantiate applyLambdaEquality cumulativity lambdaFormation

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[filler:I:(Cname  List)
                                                    {}\mrightarrow{}  J:(nameset(I)  List)
                                                    {}\mrightarrow{}  x:nameset(I)
                                                    {}\mrightarrow{}  i:\mBbbN{}2
                                                    {}\mrightarrow{}  open\_box(X;I;J;x;i)
                                                    {}\mrightarrow{}  X(I)].
    (uniform-Kan-filler(X;filler)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-10_26_20
Last ObjectModification: 2017_07_28-AM-11_22_49

Theory : cubical!sets


Home Index