Step
*
1
of Lemma
0-comp-cc-fst-comp-m
1. H : CubicalSet{j}
ā¢ [0(š)] o p o m = m ā H.š.š, ((q=0))p jā¶ H.š
BY
{ (Symmetry
THEN InstLemma `csm-equal` []
THEN BHyp -1
THEN Auto
THEN RepeatFor 2 ((FunExt THENW Auto))
THEN RepUR ``context-subset cube-context-adjoin`` -1
THEN D -1
THEN D -2
THEN D -3
THEN CsmUnfoldingNotInterval
THEN RepUR ``cube-context-adjoin`` 0) }
1
1. H : CubicalSet{j}
2. ā[A,B:jā¢]. ā[f:A jā¶ B]. ā[g:I:fset(ā) ā¶ A(I) ā¶ B(I)].
f = g ā A jā¶ B supposing f = g ā (I:fset(ā) ā¶ A(I) ā¶ B(I))
3. I : fset(ā)
4. a1 : H(I)
5. a2 : š(a1)
6. x1 : š(<a1, a2>)
7. ((q=0))p(<<a1, a2>, x1>) = 1 ā Point(face_lattice(I))
ā¢ <a1, 0> ā alpha:H(I) Ć š(alpha)
2
1. H : CubicalSet{j}
2. ā[A,B:jā¢]. ā[f:A jā¶ B]. ā[g:I:fset(ā) ā¶ A(I) ā¶ B(I)].
f = g ā A jā¶ B supposing f = g ā (I:fset(ā) ā¶ A(I) ā¶ B(I))
3. I : fset(ā)
4. a1 : H(I)
5. a2 : š(a1)
6. x1 : š(<a1, a2>)
7. ((q=0))p(<<a1, a2>, x1>) = 1 ā Point(face_lattice(I))
ā¢ <a1, a2 ā§ x1> = <a1, 0> ā (alpha:H(I) Ć š(alpha))
Latex:
Latex:
1. H : CubicalSet\{j\}
\mvdash{} [0(\mBbbI{})] o p o m = m
By
Latex:
(Symmetry
THEN InstLemma `csm-equal` []
THEN BHyp -1
THEN Auto
THEN RepeatFor 2 ((FunExt THENW Auto))
THEN RepUR ``context-subset cube-context-adjoin`` -1
THEN D -1
THEN D -2
THEN D -3
THEN CsmUnfoldingNotInterval
THEN RepUR ``cube-context-adjoin`` 0)
Home
Index