Nuprl Lemma : 0-comp-cc-fst-comp-m

[H:j⊢]. ([0(𝕀)] m ∈ H.𝕀.𝕀((q=0))p j⟶ H.𝕀)


Proof




Definitions occuring in Statement :  csm-m: m context-subset: Gamma, phi face-zero: (i=0) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) subtype_rel: A ⊆B cube-context-adjoin: X.A context-subset: Gamma, phi all: x:A. B[x] interval-0: 0(𝕀) csm-id-adjoin: [u] csm-m: m csm-comp: F compose: g cc-adjoin-cube: (v;u) csm-id: 1(X) csm-adjoin: (s;u) pi1: fst(t) csm-ap: (s)x uimplies: supposing a lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cubical-type-at: A(a) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 face-zero: (i=0) csm-ap-term: (t)s cubical-term-at: u(a) pi2: snd(t) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra uiff: uiff(P;Q) implies:  Q
Lemmas referenced :  cubical_set_wf csm-equal context-subset_wf cube-context-adjoin_wf interval-type_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf face-zero_wf cc-snd_wf csm-context-subset-subtype2 csm-m_wf I_cube_pair_redex_lemma I_cube_wf fset_wf nat_wf dM0_wf subtype_rel_self cubical-type-at_wf istype-cubical-type-at dM-to-FL-eq-1 dm-neg_wf names_wf names-deq_wf lattice-point_wf free-DeMorgan-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf subtype_rel-equal dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf interval-type-at dma-neg-eq-1-implies-meet-eq-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut instantiate introduction extract_by_obid hypothesis equalitySymmetry sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :memTop,  equalityTransitivity because_Cache applyEquality functionExtensionality dependent_functionElimination setElimination rename productElimination independent_isectElimination dependent_pairEquality_alt lambdaEquality_alt productEquality cumulativity isectEquality independent_functionElimination

Latex:
\mforall{}[H:j\mvdash{}].  ([0(\mBbbI{})]  o  p  o  m  =  m)



Date html generated: 2020_05_20-PM-04_42_23
Last ObjectModification: 2020_04_13-PM-08_47_12

Theory : cubical!type!theory


Home Index