Nuprl Lemma : csm-context-subset-subtype2

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[X:j⊢].  (Gamma j⟶ X ⊆Gamma, phi j⟶ X)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  cube_set_map_subtype3 context-subset_wf sub_cubical_set_self context-subset-is-subset cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination sqequalRule axiomEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[X:j\mvdash{}].    (Gamma  j{}\mrightarrow{}  X  \msubseteq{}r  Gamma,  phi  j{}\mrightarrow{}  X)



Date html generated: 2020_05_20-PM-02_59_03
Last ObjectModification: 2020_04_04-PM-05_13_35

Theory : cubical!type!theory


Home Index