Nuprl Lemma : cubical-term_wf

[X:j⊢]. ∀[A:{X ⊢ _}].  ({X ⊢ _:A} ∈ 𝕌{[i j']})


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-term: {X ⊢ _:A} all: x:A. B[x] prop:
Lemmas referenced :  cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma fset_wf nat_wf I_cube_wf names-hom_wf equal_wf cube-set-restriction_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis setEquality functionEquality cumulativity isectElimination hypothesisEquality applyEquality universeIsType instantiate

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].    (\{X  \mvdash{}  \_:A\}  \mmember{}  \mBbbU{}\{[i  |  j']\})



Date html generated: 2020_05_20-PM-01_51_13
Last ObjectModification: 2020_04_07-PM-00_18_05

Theory : cubical!type!theory


Home Index