Nuprl Lemma : fset_wf
∀[T:Type]. (fset(T) ∈ Type)
Proof
Definitions occuring in Statement : 
fset: fset(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
set-equal-equiv, 
quotient_wf, 
list_wf, 
set-equal_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  (fset(T)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_37_54
Last ObjectModification:
2015_12_26-PM-06_42_20
Theory : finite!sets
Home
Index