Nuprl Lemma : fset_wf

[T:Type]. (fset(T) ∈ Type)


Proof




Definitions occuring in Statement :  fset: fset(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  set-equal-equiv quotient_wf list_wf set-equal_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality independent_isectElimination universeEquality

Latex:
\mforall{}[T:Type].  (fset(T)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_37_54
Last ObjectModification: 2015_12_26-PM-06_42_20

Theory : finite!sets


Home Index