Nuprl Lemma : I_cube_wf

[A:j⊢]. ∀[I:fset(ℕ)].  (A(I) ∈ 𝕌{j'})


Proof




Definitions occuring in Statement :  I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I)
Lemmas referenced :  I_set_wf cube-cat_wf cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[A:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].    (A(I)  \mmember{}  \mBbbU{}\{j'\})



Date html generated: 2020_05_20-PM-01_38_56
Last ObjectModification: 2020_04_03-PM-03_43_29

Theory : cubical!type!theory


Home Index