Nuprl Lemma : I_cube_wf
∀[A:j⊢]. ∀[I:fset(ℕ)].  (A(I) ∈ 𝕌{j'})
Proof
Definitions occuring in Statement : 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
I_set: A(I)
Lemmas referenced : 
I_set_wf, 
cube-cat_wf, 
cat_ob_pair_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[A:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].    (A(I)  \mmember{}  \mBbbU{}\{j'\})
Date html generated:
2020_05_20-PM-01_38_56
Last ObjectModification:
2020_04_03-PM-03_43_29
Theory : cubical!type!theory
Home
Index