Nuprl Lemma : I_set_wf

[C:SmallCategory]. ∀[A:ps_context{j:l}(C)]. ∀[I:cat-ob(C)].  (A(I) ∈ 𝕌{j'})


Proof




Definitions occuring in Statement :  I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ps_context: __⊢ cat-functor: Functor(C1;C2) and: P ∧ Q I_set: A(I) all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat
Lemmas referenced :  ob_pair_lemma subtype_rel-equal cat-ob_wf op-cat_wf cat_ob_op_lemma subtype_rel_self ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis applyEquality hypothesisEquality isectElimination independent_isectElimination instantiate universeEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].    (A(I)  \mmember{}  \mBbbU{}\{j'\})



Date html generated: 2020_05_20-PM-01_23_12
Last ObjectModification: 2020_03_31-PM-02_12_14

Theory : presheaf!models!of!type!theory


Home Index