Nuprl Lemma : I_set_wf
∀[C:SmallCategory]. ∀[A:ps_context{j:l}(C)]. ∀[I:cat-ob(C)].  (A(I) ∈ 𝕌{j'})
Proof
Definitions occuring in Statement : 
I_set: A(I)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ps_context: __⊢
, 
cat-functor: Functor(C1;C2)
, 
and: P ∧ Q
, 
I_set: A(I)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
type-cat: TypeCat
Lemmas referenced : 
ob_pair_lemma, 
subtype_rel-equal, 
cat-ob_wf, 
op-cat_wf, 
cat_ob_op_lemma, 
subtype_rel_self, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
instantiate, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].    (A(I)  \mmember{}  \mBbbU{}\{j'\})
Date html generated:
2020_05_20-PM-01_23_12
Last ObjectModification:
2020_03_31-PM-02_12_14
Theory : presheaf!models!of!type!theory
Home
Index