Nuprl Lemma : small-category-cumulativity-2

SmallCategory ⊆small-category{[j i]:l}


Proof




Definitions occuring in Statement :  small-category: SmallCategory subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T small-category: SmallCategory spreadn: spread4 uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  subtype_rel_dep_function small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution setElimination thin rename cut productElimination dependent_set_memberEquality_alt dependent_pairEquality_alt cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis instantiate introduction extract_by_obid isectElimination sqequalRule universeEquality inhabitedIsType because_Cache independent_isectElimination universeIsType lambdaFormation_alt productEquality functionEquality productIsType functionIsType equalityIstype

Latex:
SmallCategory  \msubseteq{}r  small-category\{[j  |  i]:l\}



Date html generated: 2020_05_20-AM-07_49_26
Last ObjectModification: 2020_04_01-AM-00_46_17

Theory : small!categories


Home Index