Nuprl Lemma : small-category-cumulativity-2
SmallCategory ⊆r small-category{[j | i]:l}
Proof
Definitions occuring in Statement : 
small-category: SmallCategory
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
small-category: SmallCategory
, 
spreadn: spread4, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
subtype_rel_dep_function, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
universeEquality, 
inhabitedIsType, 
because_Cache, 
independent_isectElimination, 
universeIsType, 
lambdaFormation_alt, 
productEquality, 
functionEquality, 
productIsType, 
functionIsType, 
equalityIstype
Latex:
SmallCategory  \msubseteq{}r  small-category\{[j  |  i]:l\}
Date html generated:
2020_05_20-AM-07_49_26
Last ObjectModification:
2020_04_01-AM-00_46_17
Theory : small!categories
Home
Index