Nuprl Lemma : cube-set-restriction_wf

[X:j⊢]. ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[s:X(I)].  (f(s) ∈ X(J))


Proof




Definitions occuring in Statement :  cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  psc-restriction_wf cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[s:X(I)].    (f(s)  \mmember{}  X(J))



Date html generated: 2020_05_20-PM-01_39_02
Last ObjectModification: 2020_04_03-PM-03_32_41

Theory : cubical!type!theory


Home Index