Nuprl Lemma : psc-restriction_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) I]. ∀[s:X(I)].  (f(s) ∈ X(J))


Proof




Definitions occuring in Statement :  psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T apply: a cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T psc-restriction: f(s) ps_context: __⊢ cat-functor: Functor(C1;C2) and: P ∧ Q all: x:A. B[x] pi2: snd(t) I_set: A(I) subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  I_set_pair_redex_lemma ob_pair_lemma subtype_rel-equal cat-ob_wf op-cat_wf cat_ob_op_lemma cat-arrow_wf op-cat-arrow I_set_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename productElimination extract_by_obid dependent_functionElimination Error :memTop,  hypothesis applyEquality hypothesisEquality isectElimination because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I,J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[s:X(I)].
    (f(s)  \mmember{}  X(J))



Date html generated: 2020_05_20-PM-01_23_15
Last ObjectModification: 2020_04_02-AM-11_20_36

Theory : presheaf!models!of!type!theory


Home Index