Nuprl Lemma : context-subset-is-subset

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].  sub_cubical_set{j:l}(Gamma, phi; Gamma)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a context-subset: Gamma, phi all: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt
Lemmas referenced :  implies-sub_cubical_set context-subset_wf I_cube_pair_redex_lemma I_cube_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-type_wf subtype_rel_self lattice-1_wf fset_wf nat_wf cube_set_restriction_pair_lemma cube-set-restriction_wf names-hom_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule dependent_functionElimination Error :memTop,  lambdaFormation_alt lambdaEquality_alt setElimination rename setIsType universeIsType equalityIstype applyEquality instantiate productEquality cumulativity isectEquality because_Cache inhabitedIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(Gamma,  phi;  Gamma)



Date html generated: 2020_05_20-PM-02_51_48
Last ObjectModification: 2020_04_04-PM-05_06_19

Theory : cubical!type!theory


Home Index