Nuprl Lemma : implies-sub_cubical_set

[Y,X:j⊢].
  (sub_cubical_set{j:l}(Y; X)) supposing 
     ((∀A,B:fset(ℕ). ∀g:B ⟶ A. ∀rho:Y(A).  (g(rho) g(rho) ∈ X(B))) and 
     (∀I:fset(ℕ). (Y(I) ⊆X(I))))


Proof




Definitions occuring in Statement :  sub_cubical_set: Y ⊆ X cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s) sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  implies-sub_ps_context cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[Y,X:j\mvdash{}].
    (sub\_cubical\_set\{j:l\}(Y;  X))  supposing 
          ((\mforall{}A,B:fset(\mBbbN{}).  \mforall{}g:B  {}\mrightarrow{}  A.  \mforall{}rho:Y(A).    (g(rho)  =  g(rho)))  and 
          (\mforall{}I:fset(\mBbbN{}).  (Y(I)  \msubseteq{}r  X(I))))



Date html generated: 2020_05_20-PM-01_43_31
Last ObjectModification: 2020_04_03-PM-04_14_47

Theory : cubical!type!theory


Home Index