Nuprl Lemma : implies-sub_ps_context
∀[C:SmallCategory]. ∀[Y,X:ps_context{j:l}(C)].
  (sub_ps_context{j:l}(C; Y; X)) supposing 
     ((∀A,B:cat-ob(C). ∀g:cat-arrow(C) B A. ∀rho:Y(A).  (g(rho) = g(rho) ∈ X(B))) and 
     (∀I:cat-ob(C). (Y(I) ⊆r X(I))))
Proof
Definitions occuring in Statement : 
sub_ps_context: Y ⊆ X, 
psc-restriction: f(s), 
I_set: A(I), 
ps_context: __⊢, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
equal: s = t ∈ T, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sub_ps_context: Y ⊆ X, 
member: t ∈ T, 
pscm-id: 1(X), 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
small-category: SmallCategory, 
spreadn: spread4, 
and: P ∧ Q, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
pi2: snd(t), 
type-cat: TypeCat, 
op-cat: op-cat(C), 
functor-ob: ob(F), 
I_set: A(I), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
functor-arrow: arrow(F), 
compose: f o g, 
psc-restriction: f(s), 
ps_context: __⊢, 
guard: {T}
Lemmas referenced : 
I_set_wf, 
cat_ob_pair_lemma, 
cat_comp_tuple_lemma, 
cat-ob_wf, 
op-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
functor-ob_wf, 
cat-comp_wf, 
small-category-cumulativity-2, 
functor-arrow_wf, 
psc-restriction_wf, 
ps_context_cumulativity2, 
subtype_rel_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
dependent_functionElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :memTop, 
because_Cache, 
lambdaFormation_alt, 
functionExtensionality_alt, 
functionIsType, 
equalityIstype, 
instantiate
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Y,X:ps\_context\{j:l\}(C)].
    (sub\_ps\_context\{j:l\}(C;  Y;  X))  supposing  
          ((\mforall{}A,B:cat-ob(C).  \mforall{}g:cat-arrow(C)  B  A.  \mforall{}rho:Y(A).    (g(rho)  =  g(rho)))  and  
          (\mforall{}I:cat-ob(C).  (Y(I)  \msubseteq{}r  X(I))))
 Date html generated: 
2020_05_20-PM-01_24_51
 Last ObjectModification: 
2020_04_01-PM-01_57_34
Theory : presheaf!models!of!type!theory
Home
Index