Nuprl Lemma : cat-comp_wf

[C:SmallCategory]
  (cat-comp(C) ∈ x:cat-ob(C)
   ⟶ y:cat-ob(C)
   ⟶ z:cat-ob(C)
   ⟶ (cat-arrow(C) y)
   ⟶ (cat-arrow(C) z)
   ⟶ (cat-arrow(C) z))


Proof




Definitions occuring in Statement :  cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 and: P ∧ Q cat-comp: cat-comp(C) all: x:A. B[x] top: Top pi2: snd(t)
Lemmas referenced :  cat_ob_pair_lemma cat_arrow_triple_lemma small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality

Latex:
\mforall{}[C:SmallCategory]
    (cat-comp(C)  \mmember{}  x:cat-ob(C)
      {}\mrightarrow{}  y:cat-ob(C)
      {}\mrightarrow{}  z:cat-ob(C)
      {}\mrightarrow{}  (cat-arrow(C)  x  y)
      {}\mrightarrow{}  (cat-arrow(C)  y  z)
      {}\mrightarrow{}  (cat-arrow(C)  x  z))



Date html generated: 2020_05_20-AM-07_49_37
Last ObjectModification: 2017_01_10-PM-06_15_40

Theory : small!categories


Home Index