Nuprl Lemma : lattice-meet_wf
∀[l:LatticeStructure]. ∀[a,b:Point(l)]. (a ∧ b ∈ Point(l))
Proof
Definitions occuring in Statement :
lattice-meet: a ∧ b
,
lattice-point: Point(l)
,
lattice-structure: LatticeStructure
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
lattice-meet: a ∧ b
,
lattice-structure: LatticeStructure
,
record+: record+,
record-select: r.x
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
lattice-point: Point(l)
Lemmas referenced :
subtype_rel_self,
lattice-point_wf,
lattice-structure_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
dependentIntersectionElimination,
dependentIntersectionEqElimination,
thin,
hypothesis,
applyEquality,
tokenEquality,
instantiate,
lemma_by_obid,
isectElimination,
universeEquality,
functionEquality,
hypothesisEquality,
lambdaEquality,
equalityTransitivity,
equalitySymmetry,
axiomEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[l:LatticeStructure]. \mforall{}[a,b:Point(l)]. (a \mwedge{} b \mmember{} Point(l))
Date html generated:
2020_05_20-AM-08_23_31
Last ObjectModification:
2015_12_28-PM-02_03_48
Theory : lattices
Home
Index