Nuprl Lemma : lattice-point_wf
∀[l:LatticeStructure]. (Point(l) ∈ Type)
Proof
Definitions occuring in Statement : 
lattice-point: Point(l)
, 
lattice-structure: LatticeStructure
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-point: Point(l)
, 
lattice-structure: LatticeStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
subtype_rel_self, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
lemma_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[l:LatticeStructure].  (Point(l)  \mmember{}  Type)
Date html generated:
2020_05_20-AM-08_23_28
Last ObjectModification:
2015_12_28-PM-02_03_51
Theory : lattices
Home
Index