Nuprl Lemma : lattice-point_wf

[l:LatticeStructure]. (Point(l) ∈ Type)


Proof




Definitions occuring in Statement :  lattice-point: Point(l) lattice-structure: LatticeStructure uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-point: Point(l) lattice-structure: LatticeStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  subtype_rel_self lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality instantiate lemma_by_obid isectElimination universeEquality functionEquality equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[l:LatticeStructure].  (Point(l)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-08_23_28
Last ObjectModification: 2015_12_28-PM-02_03_51

Theory : lattices


Home Index