Nuprl Lemma : context-subset_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].  Gamma, phi j⊢


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet ps_context: __⊢ cat-functor: Functor(C1;C2) context-subset: Gamma, phi type-cat: TypeCat cat-arrow: cat-arrow(C) op-cat: op-cat(C) cat-ob: cat-ob(C) cube-cat: CubeCat spreadn: spread4 pi1: fst(t) pi2: snd(t) squash: T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cat-comp: cat-comp(C) cat-id: cat-id(C) all: x:A. B[x] compose: g
Lemmas referenced :  I_cube_wf fset_wf nat_wf equal_wf squash_wf true_wf istype-universe lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf face-term-at-restriction-eq-1 lattice-1_wf subtype_rel_self iff_weakening_equal cube-set-restriction_wf cubical-term-at_wf face-type_wf names-hom_wf nh-id_wf cube-set-restriction-id nh-comp_wf cube-set-restriction-comp cat-ob_wf op-cat_wf cube-cat_wf cat-arrow_wf type-cat_wf cat-id_wf cat-comp_wf cubical-term_wf cubical_set_wf face_lattice-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalRule dependent_pairEquality_alt lambdaEquality_alt setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType applyEquality imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination equalityIstype setIsType functionIsType independent_pairFormation lambdaFormation_alt functionExtensionality dependent_functionElimination productIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    Gamma,  phi  j\mvdash{}



Date html generated: 2020_05_20-PM-02_44_56
Last ObjectModification: 2020_04_05-PM-01_42_57

Theory : cubical!type!theory


Home Index