Nuprl Lemma : face_lattice-point_wf

[I:fset(ℕ)]. (Point(face_lattice(I)) ∈ Type)


Proof




Definitions occuring in Statement :  face_lattice: face_lattice(I) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache universeIsType independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:fset(\mBbbN{})].  (Point(face\_lattice(I))  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_44_15
Last ObjectModification: 2020_04_05-PM-01_40_44

Theory : cubical!type!theory


Home Index