Nuprl Lemma : bounded-lattice-structure-subtype

BoundedLatticeStructure ⊆LatticeStructure


Proof




Definitions occuring in Statement :  bounded-lattice-structure: BoundedLatticeStructure lattice-structure: LatticeStructure subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T bounded-lattice-structure: BoundedLatticeStructure lattice-structure: LatticeStructure record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] lattice-point: Point(l)
Lemmas referenced :  subtype_rel_self lattice-point_wf bounded-lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality lemma_by_obid isectElimination equalityTransitivity equalitySymmetry

Latex:
BoundedLatticeStructure  \msubseteq{}r  LatticeStructure



Date html generated: 2020_05_20-AM-08_24_04
Last ObjectModification: 2015_12_28-PM-02_03_27

Theory : lattices


Home Index