Nuprl Lemma : bounded-lattice-axioms_wf

[l:BoundedLatticeStructure]. (bounded-lattice-axioms(l) ∈ ℙ)


Proof




Definitions occuring in Statement :  bounded-lattice-axioms: bounded-lattice-axioms(l) bounded-lattice-structure: BoundedLatticeStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-axioms: bounded-lattice-axioms(l) prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  uall_wf lattice-point_wf bounded-lattice-structure-subtype equal_wf lattice-join_wf lattice-0_wf lattice-meet_wf lattice-1_wf bounded-lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[l:BoundedLatticeStructure].  (bounded-lattice-axioms(l)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-08_24_14
Last ObjectModification: 2015_12_28-PM-02_03_31

Theory : lattices


Home Index