Nuprl Lemma : lattice-axioms_wf

[l:LatticeStructure]. (lattice-axioms(l) ∈ ℙ)


Proof




Definitions occuring in Statement :  lattice-axioms: lattice-axioms(l) lattice-structure: LatticeStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-axioms: lattice-axioms(l) prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[l:LatticeStructure].  (lattice-axioms(l)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-08_23_36
Last ObjectModification: 2015_12_28-PM-02_03_54

Theory : lattices


Home Index