Nuprl Lemma : lattice-axioms_wf
∀[l:LatticeStructure]. (lattice-axioms(l) ∈ ℙ)
Proof
Definitions occuring in Statement : 
lattice-axioms: lattice-axioms(l)
, 
lattice-structure: LatticeStructure
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-axioms: lattice-axioms(l)
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[l:LatticeStructure].  (lattice-axioms(l)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-08_23_36
Last ObjectModification:
2015_12_28-PM-02_03_54
Theory : lattices
Home
Index