Nuprl Lemma : cube-set-restriction-comp

X:j⊢. ∀I,J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀a:X(I).  (g(f(a)) f ⋅ g(a) ∈ X(K))


Proof




Definitions occuring in Statement :  cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  psc-restriction-comp cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}I,J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}a:X(I).    (g(f(a))  =  f  \mcdot{}  g(a))



Date html generated: 2020_05_20-PM-01_42_34
Last ObjectModification: 2020_04_03-PM-03_34_25

Theory : cubical!type!theory


Home Index