Nuprl Lemma : psc-restriction-comp

C:SmallCategory. ∀X:ps_context{j:l}(C). ∀I,J,K:cat-ob(C). ∀f:cat-arrow(C) I. ∀g:cat-arrow(C) J. ∀a:X(I).
  (g(f(a)) cat-comp(C) f(a) ∈ X(K))


Proof




Definitions occuring in Statement :  psc-restriction: f(s) I_set: A(I) ps_context: __⊢ all: x:A. B[x] apply: a equal: t ∈ T cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T ps_context: __⊢ cat-functor: Functor(C1;C2) and: P ∧ Q psc-restriction: f(s) pi2: snd(t) small-category: SmallCategory spreadn: spread4 cat-arrow: cat-arrow(C) pi1: fst(t) cat-ob: cat-ob(C) type-cat: TypeCat cat-comp: cat-comp(C) op-cat: op-cat(C) cat-id: cat-id(C) squash: T uall: [x:A]. B[x] prop: I_set: A(I) true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q compose: g
Lemmas referenced :  I_set_pair_redex_lemma equal_wf squash_wf true_wf istype-universe ob_pair_lemma subtype_rel_self iff_weakening_equal compose_wf I_set_wf cat-arrow_wf cat-ob_wf ps_context_wf small-category-cumulativity-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesisEquality sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis applyEquality instantiate lambdaEquality_alt imageElimination isectElimination equalityTransitivity equalitySymmetry universeIsType universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination inhabitedIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}I,J,K:cat-ob(C).  \mforall{}f:cat-arrow(C)  J  I.  \mforall{}g:cat-arrow(C)  K  J.
\mforall{}a:X(I).
    (g(f(a))  =  cat-comp(C)  K  J  I  g  f(a))



Date html generated: 2020_05_20-PM-01_24_30
Last ObjectModification: 2020_04_01-AM-11_00_37

Theory : presheaf!models!of!type!theory


Home Index