Nuprl Lemma : nh-comp_wf

[I,J,K:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[g:J ⟶ K].  (g ⋅ f ∈ I ⟶ K)


Proof




Definitions occuring in Statement :  nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J nh-comp: g ⋅ f dM: dM(I) subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s]
Lemmas referenced :  dma-lift-compose_wf names_wf names-deq_wf lattice-point_wf free-DeMorgan-algebra_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule applyEquality lambdaEquality functionEquality instantiate productEquality independent_isectElimination cumulativity universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I,J,K:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:J  {}\mrightarrow{}  K].    (g  \mcdot{}  f  \mmember{}  I  {}\mrightarrow{}  K)



Date html generated: 2016_05_18-AM-11_59_32
Last ObjectModification: 2015_12_28-PM-03_07_19

Theory : cubical!type!theory


Home Index