Nuprl Lemma : names_wf
∀[I:fset(ℕ)]. (names(I) ∈ Type)
Proof
Definitions occuring in Statement : 
names: names(I)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
names: names(I)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
nat_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:fset(\mBbbN{})].  (names(I)  \mmember{}  Type)
Date html generated:
2016_05_18-AM-11_56_13
Last ObjectModification:
2015_12_28-PM-03_08_57
Theory : cubical!type!theory
Home
Index