Nuprl Lemma : names_wf

[I:fset(ℕ)]. (names(I) ∈ Type)


Proof




Definitions occuring in Statement :  names: names(I) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names: names(I) subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  nat_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin applyEquality intEquality independent_isectElimination because_Cache lambdaEquality natural_numberEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:fset(\mBbbN{})].  (names(I)  \mmember{}  Type)



Date html generated: 2016_05_18-AM-11_56_13
Last ObjectModification: 2015_12_28-PM-03_08_57

Theory : cubical!type!theory


Home Index