Nuprl Lemma : dma-lift-compose_wf

[I,J,K:Type]. ∀[eqi:EqDecider(I)]. ∀[eqj:EqDecider(J)]. ∀[f:J ⟶ Point(free-DeMorgan-algebra(I;eqi))].
[g:K ⟶ Point(free-DeMorgan-algebra(J;eqj))].
  (dma-lift-compose(I;J;eqi;eqj;f;g) ∈ K ⟶ Point(free-DeMorgan-algebra(I;eqi)))


Proof




Definitions occuring in Statement :  dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) rev_implies:  Q assert: b implies:  Q iff: ⇐⇒ Q bool: 𝔹 btrue: tt mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) record-select: r.x lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  lattice-point_wf free-DeMorgan-algebra_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf deq_wf istype-universe free-dml-deq_wf free-dma-lift_wf compose_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType hypothesisEquality extract_by_obid isectElimination thin applyEquality instantiate lambdaEquality_alt productEquality independent_isectElimination cumulativity inhabitedIsType because_Cache isect_memberEquality_alt isectIsTypeImplies universeEquality functionExtensionality dependent_functionElimination setElimination rename lambdaEquality

Latex:
\mforall{}[I,J,K:Type].  \mforall{}[eqi:EqDecider(I)].  \mforall{}[eqj:EqDecider(J)].
\mforall{}[f:J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))].  \mforall{}[g:K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))].
    (dma-lift-compose(I;J;eqi;eqj;f;g)  \mmember{}  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi)))



Date html generated: 2019_10_31-AM-07_23_06
Last ObjectModification: 2018_11_08-PM-05_59_51

Theory : lattices


Home Index